博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
游戏开发中的矩阵初探
阅读量:5987 次
发布时间:2019-06-20

本文共 1306 字,大约阅读时间需要 4 分钟。

游戏开发中的矩阵初探

1.矩阵在3d空间中的作用

(1)长方体A想绕(10,3,4)旋转50°且沿着x方向放大2倍且向(9,-1,8)方向平移2个单位,那么经过上面的变换后,新的长方体各个点的坐标是多少呢?应用矩阵可以很轻松的算出答案。

(2)知道子坐标系在父坐标系中的位置,可以求出子坐标系中的店在父坐标系中的位置。

2.矩阵的基础知识

矩阵能描述任意线性变换。线性变换保留了直线和平行线,线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体积可能被变换改变了。简单的说,线性变换可能“拉伸”坐标系,但不会“弯曲”或“卷折”坐标系。

(1)平移

以下矩阵能把一点向t矢量方向平移:

(2)旋转

正方向为从旋转轴正向看过去的逆时针方向,比如绕z轴[0,0,1]旋转,正方向为x至y轴方向

知道了绕着三轴后的旋转矩阵,那么下面就是绕任意向量所得的矩阵了。设M为单位矩阵经向量a旋转后的矩阵,且a = (xa, ya, za),旋转角度为α,则

M=

不要问为什么,记住即可。

(3)缩放

缩放点为r,X轴缩放sx,y轴缩放sy,z轴缩放sz,则新坐标为:

 

(4)综合

比如要把坐标系中的所有点平移[2,3,4](X轴平移2,y轴平移3,z轴平移4)

绕z轴旋转90°,

x,y,z轴都放大2倍

则得到的变换矩阵为

注意:缩放不是只把sx,sy,sz位置相乘,而是那一轴的模为缩放值

最后所得的变换矩阵不等于相乘

3.子空间向父空间的变换

把点或方向从任何子坐标系C变换至父坐标系P的矩阵,可写作Mc-p。此矩阵表示把点或方向从子空间变换至父空间。以下等式把任何子空间位置矢量Pc变换至父空间位置矢量Pp,P= PcMc-p    

Mc-p  = 

  • ic为子空间x轴的单位基矢量,此矢量以父空间坐标表示
  • jc为子空间y轴的单位基矢量,此矢量以父空间坐标表示

  • kc为子空间z轴的单位基矢量,此矢量以父空间坐标表示

  • tc为子坐标系相对于父坐标系的平移

4.坐标系中点的RST(旋转平移缩放)

OpenGl超级宝典第四版P101页说:如果一个4×4矩阵包含了一个不同的坐标系统的位置和方向(可以看成上面的Mc-p),那么,把一个顶点Pp与这个矩阵相乘,其结果就是一个变换到该坐标系统的新顶点Pc(坐标还是相对于原坐标系)。这看起来像公式Pc =Pp Mc-p ,错错错!这用Pp完全是个误导,把Pp改名字叫A,坐标V,由于是线性变换,所以在新坐标系统中A的坐标还是V,所以这就与P= PcMc-p  一致了,Pp为A在新坐标系统中V在原坐标系中的坐标。

5.OpenGl中的矩阵变换

OpenGl中矩阵的变换是叠加的,每做一次矩阵变换,就把零点移到新的坐标系中。下次变换只影响当前坐标系及其子坐标系,不会影响其父坐标系。载入单位矩阵是将零点重新置为最初的零点。

单纯的矩阵运算不会移动零点位置,所以与单位矩阵相乘没有任何效果。

参考:

1.OpenGl超级宝典第四版P101

2.游戏引擎架构P151

3. 

4.

转载于:https://www.cnblogs.com/BigFeng/p/4970388.html

你可能感兴趣的文章
解决远程桌面无法连接的问题-总结的精华
查看>>
root账户不能使用密码只能使用密钥远程登陆
查看>>
Maven2的对象模型POM
查看>>
hadoop streaming -archives 解压jar、zip、tar.gz的验证
查看>>
No package mongodb-org available. 问题解决
查看>>
python精简笔记-[5]-列表[list]
查看>>
服务器故障排查的一些可用的命令
查看>>
《head first java》要点
查看>>
hyper-v server 2008 R2与存储兼容性测试
查看>>
sql 查询
查看>>
Linux shell 脚本示例(二)
查看>>
redis未授权访问漏洞利用
查看>>
linux ps 命令详解
查看>>
Java IO类库之PipedWriter
查看>>
UFT入门教程(2)—活动屏幕、运行次数及运行时间
查看>>
我的友情链接
查看>>
Windows Server 2008 R2 + FileZilla server的防火墙设置问题
查看>>
docker 常用命令
查看>>
spring data neo4j 中节点实体之间的关系在代码中怎样维护
查看>>
Java记录 -23- equals方法和双等号解析
查看>>